Ensembles finis Exemples

Trouver la fonction réciproque f(x)=1/2* logarithme de 4x
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Multipliez les deux côtés de l’équation par .
Étape 3.3
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Associez et .
Étape 3.3.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.2.1
Annulez le facteur commun.
Étape 3.3.1.2.2
Réécrivez l’expression.
Étape 3.4
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Réécrivez l’équation comme .
Étape 3.5.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1
Divisez chaque terme dans par .
Étape 3.5.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.2.1.1
Annulez le facteur commun.
Étape 3.5.2.2.1.2
Divisez par .
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1.1
Annulez le facteur commun.
Étape 5.2.3.1.2
Réécrivez l’expression.
Étape 5.2.3.2
Simplifiez en déplaçant dans le logarithme.
Étape 5.2.3.3
L’élévation à une puissance et log sont des fonctions inverses.
Étape 5.2.3.4
Simplifiez
Étape 5.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.1
Annulez le facteur commun.
Étape 5.2.4.2
Divisez par .
Étape 5.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Annulez le facteur commun.
Étape 5.3.3.2
Réécrivez l’expression.
Étape 5.3.4
Utilisez les règles des logarithmes pour retirer de l’exposant.
Étape 5.3.5
La base logarithmique de est .
Étape 5.3.6
Multipliez par .
Étape 5.3.7
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.7.1
Factorisez à partir de .
Étape 5.3.7.2
Annulez le facteur commun.
Étape 5.3.7.3
Réécrivez l’expression.
Étape 5.4
Comme et , est l’inverse de .